Part Number Hot Search : 
BC847BW S9S12 TE5544N 0ZC25RT BDV67C HDBS103G AD5200 IW1209SA
Product Description
Full Text Search
 

To Download PB58A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 POWER BOOSTER AMPLIFIERS
PB58 * PB58A
MICROTECHNOLOGY
HTTP://WWW.APEXMICROTECH.COM
(800) 546-APEX
(800) 546-2739
FEATURES
* WIDE SUPPLY RANGE -- 15V to 150V * HIGH OUTPUT CURRENT -- 1.5A Continuous (PB58) 2.0A Continuous (PB58A) * VOLTAGE AND CURRENT GAIN * HIGH SLEW -- 50V/s Minimum (PB58) 75V/s Minimum (PB58A) * PROGRAMMABLE OUTPUT CURRENT LIMIT * HIGH POWER BANDWIDTH -- 320 kHz Minimum * LOW QUIESCENT CURRENT -- 12mA Typical * EVALUATION KIT -- See EK50
EQUIVALENT SCHEMATIC
3 +Vs Q2 Q1 Q3 IN 4 GAIN 6.2K 7 50K COM 5 COMP 8 Q9 Q10 3.1K Q7 Q11 Q8 2 CL Q4 Q6 Q5 OUT 1
APPLICATIONS
* HIGH VOLTAGE INSTRUMENTATION * Electrostatic TRANSDUCERS & DEFLECTION * Programmable Power Supplies Up to 280V p-p
DESCRIPTION
The PB58 is a high voltage, high current amplifier designed to provide voltage and current gain for a small signal, general purpose op amp. Including the power booster within the feedback loop of the driver amplifier results in a composite amplifier with the accuracy of the driver and the extended output voltage range and current capability of the booster. The PB58 can also be used without a driver in some applications, requiring only an external current limit resistor to function properly. The output stage utilizes complementary MOSFETs, providing symmetrical output impedance and eliminating second breakdown limitations imposed by Bipolar Transistors. Internal feedback and gainset resistors are provided for a pin-strapable gain of 3. Additional gain can be achieved with a single external resistor. Compensation is not required for most driver/gain configurations, but can be accomplished with a single external capacitor. Enormous flexibility is provided through the choice of driver amplifier, current limit, supply voltage, voltage gain, and compensation. This hybrid circuit utilizes a beryllia (BeO) substrate, thick film resistors, ceramic capacitors and semiconductor chips to maximize reliability, minimize size and give top performance. Ultrasonically bonded aluminum wires provide reliable interconnections at all operating temperatures. The 8-pin TO-3 package is electrically isolated and hermetically sealed using one-shot resistance welding. The use of compressible isolation washers voids the warranty. Figure 1. Inverting TYPICAL APPLICATION composite amplifier. C
F
-Vs 6
EXTERNAL CONNECTIONS
R CL +Vs CL
3
2
OUT
IN
4
TOP VIEW
1
COM
VIN
RI
+15V OP AMP
RF +Vs IN COM PB58
5
-Vs 6
COMP
8 7
GAIN RG
CC
R CL
OUT CC RG
RL
-15V
-Vs
APEX MICROTECHNOLOGY CORPORATION * TELEPHONE (520) 690-8600 * FAX (520) 888-3329 * ORDERS (520) 690-8601 * EMAIL prodlit@apexmicrotech.com
PB58 * PB58A
ABSOLUTE MAXIMUM RATINGS
SUPPLY VOLTAGE, +VS to -VS OUTPUT CURRENT, within SOA POWER DISSIPATION, internal at TC = 25C1 INPUT VOLTAGE, referred to COM TEMPERATURE, pin solder--10 sec max TEMPERATURE, junction1 TEMPERATURE, storage OPERATING TEMPERATURE RANGE, case
ABSOLUTE MAXIMUM RATINGS SPECIFICATIONS
300V 2.0A 83W 15V 300C 175C -65 to +150C -55 to +125C
SPECIFICATIONS
PARAMETER INPUT OFFSET VOLTAGE, initial OFFSET VOLTAGE, vs. temperature INPUT IMPEDANCE, DC INPUT CAPACITANCE CLOSED LOOP GAIN RANGE GAIN ACCURACY, internal Rg, Rf GAIN ACCURACY, external Rf PHASE SHIFT OUTPUT VOLTAGE SWING VOLTAGE SWING VOLTAGE SWING CURRENT, continuous SLEW RATE CAPACITIVE LOAD SETTLING TIME to .1% POWER BANDWIDTH SMALL SIGNAL BANDWIDTH SMALL SIGNAL BANDWIDTH POWER SUPPLY VOLTAGE, VS4 CURRENT, quiescent Full temperature range VS = 15 VS = 60 VS = 150 156 Io = 1.5A (PB58), 2A (PB58A) Io = 1A Io = .1A Full temperature range Full temperature range RL = 100, 2V step VC = 100 Vpp CC = 22pF, AV = 25, Vcc = 100 CC = 22pF, AV = 3, Vcc = 30 VS-11 VS-10 VS-8 1.5 50 160 Full temperature range3 25 3 AV = 3 AV = 10 f = 10kHz, AVCL = 10, CC = 22pF f = 200kHz, AVCL = 10, CC = 22pF TEST CONDITIONS2 MIN
PB58 TYP MAX MIN
PB58A TYP MAX UNITS
.75 -4.5 50 3 10 10 15 10 60
1.75 -7 * 25 15 25 *
* * * * * * * * *
1.0 * * * *
V mV/C k pF V/V % %
VS -8 VS -7 VS -5 100 2200 2 320 100 1
VS-15 * * 2.0 75 240
VS-11 * * * * * * * *
V V V A V/s pF s kHz kHz MHz
60 11 12 14
150 18
*
* * * *
* *
V mA mA mA
THERMAL RESISTANCE, AC junction to case5 RESISTANCE, DC junction to case RESISTANCE, junction to air TEMPERATURE RANGE, case Full temp. range, f > 60Hz Full temp. range, f < 60Hz Full temperature range Meets full range specifications 1.2 1.6 30 25 1.3 1.8 85 * * * * * * * * C/W C/W C/W C
-25
NOTES:
* 1. 2. 3. 4. 5. 6.
The specification of PB58A is identical to the specification for PB58 in applicable column to the left. Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF (Mean Time to Failure). The power supply voltage specified under typical (TYP) applies, TC = 25C unless otherwise noted. Guaranteed by design but not tested. +VS and -VS denote the positive and negative supply rail respectively. Rating applies if the output current alternates between both output transistors at a rate faster than 60Hz. +VS/-VS must be at least 15V above/below COM. The PB58 is constructed from MOSFET transistors. ESD handling procedures must be observed. The internal substrate contains beryllia (BeO). Do not break the seal. If accidentally broken, do not crush, machine, or subject to temperatures in excess of 850C to avoid generating toxic fumes.
CAUTION
APEX MICROTECHNOLOGY CORPORATION * 5980 NORTH SHANNON ROAD * TUCSON, ARIZONA 85741 * USA * APPLICATIONS HOTLINE: 1 (800) 546-2739
TYPICAL PERFORMANCE GRAPHS
VOLTAGE DROP FROM SUPPLY, VS -- VO (V)
PB58 * PB58A
CURRENT LIMIT
2
INTERNAL POWER DISSIPATION, P(W)
POWER DERATING
OUTPUT VOLTAGE SWING
14 12 10 8 6 VO VO +
100 80 60 40 20 0 -25
CURRENT LIMIT, I LIM (A)
1.5
R
CL
= .4
7
1
RC = L .68
R CL = 1.5
.5
0 25 50 75 100 125 CASE TEMPERATURE, TC (C) 0
0 -25
25 0 50 75 100 125 CASE TEMPERATURE, TC (C)
4 .01
.05 1 1.5 OUTPUT CURRENT, I O (A)
2
SMALL SIGNAL RESPONSE
80
SMALL SIGNAL RESPONSE
30 0
SMALL SIGNAL RESPONSE
CLOSED LOOP PHASE, ()
AV CL = 3 -45 AV CL = 10 AV CL = 25 -90
CLOSED LOOP GAIN, A (dB)
AV CL = 25 20 AV CL = 10 10 AV CL = 3 0 C C = 22pF 10K 100K 1M FREQUENCY, F (Hz) 10M
OPEN LOOP GAIN, A (dB)
OPEN LOOP PHASE, ()
60
-45
40
-90
20
-135
-135 C C = 22pF 10K 100K 1M FREQUENCY, F (Hz) 10M
0 100
1K 10K 100K 1M FREQUENCY, F (Hz)
-180 10M
-10 1K
-180 1K
QUIESCENT CURRENT
INPUT OFFSET VOLTAGE, VOS (V)
20 .5
INPUT OFFSET VOLTAGE
400
SLEW RATE VS. TEMP.
QUIESCENT CURRENT, I Q (mA)
15
Vs = 1
50V
0
SLEW RATE, SR (V/ s)
300
+S LE
10
00 Vs = 1
V
-.5
200 -SLEW
W
Vs = 3
0V
5
-1
100
0 0 25 50 -25 75 100 125 CASE TEMPERATURE, T C (C)
-1.5 -25
0 25 50 75 100 125 CASE TEMPERATURE, TC (C)
0 -25 0 25 50 75 100 125 CASE TEMPERATURE, T C (C)
POWER RESPONSE
300 80
PULSE RESPONSE
.1
HARMONIC DISTORTION
DRIVER = TL070 VS = 60V V O = 95VPP
OUTPUT VOLTAGE, VQ (VPP )
OUTPUT VOLTAGE, VQ (V)
DISTORTION, THD (%)
40 20 0 -20 -40 -60 -80 1 2 345 6 TIME, t (s) 7 8
.03
R
100 50 40 30 20 10 100K
L
=3
5
200
60
.01
.003
1M 300K 3M FREQUENCY, F (Hz)
10M
.001 300
10K 1K 3K FREQUENCY, F (Hz)
R
L
=
30K
APEX MICROTECHNOLOGY CORPORATION * TELEPHONE (520) 690-8600 * FAX (520) 888-3329 * ORDERS (520) 690-8601 * EMAIL prodlit@apexmicrotech.com
1K
PB58 * PB58A
GENERAL
Please read the "General Operating Considerations" section, which covers stability, supplies, heatsinking, mounting, current limit, SOA interpretation, and specification interpretation. Additional information can be found in the application notes. For information on the package outline, heatsinks, and mounting hardware, consult the "Accessory and Package Mechanical Data" section of the handbook.
OPERATING CONSIDERATIONS
STABILITY
Stability can be maximized by observing the following guidelines: 1. Operate the booster in the lowest practical gain. 2. Operate the driver amplifier in the highest practical effective gain. 3. Keep gain-bandwidth product of the driver lower than the closed loop bandwidth of the booster. 4. Minimize phase shift within the loop. A good compromise for (1) and (2) is to set booster gain from 3 to 10 with total (composite) gain at least a factor of 3 times booster gain. Guideline (3) implies compensating the driver as required in low composite gain configurations. Phase shift within the loop (4) is minimized through use of booster and loop compensation capacitors Cc and Cf when required. Typical values are 5pF to 33pF. Stability is the most difficult to achieve in a configuration where driver effective gain is unity (ie; total gain = booster gain). For this situation, Table 1 gives compensation values for optimum square wave response with the op amp drivers listed. DRIVER OP07 741 LF155 LF156 TL070 CCH 22p CF 22p 18p 4.7p 4.7p 15p CC 22p 10p 10p 10p 10p FPBW 4kHz 20kHz 60kHz 80kHz 80kHz SR 1.5 7 >60 >60 >60
CURRENT LIMIT
For proper operation, the current limit resistor (RCL) must be connected as shown in the external connection diagram. The minimum value is 0.33 with a maximum practical value of 47. For optimum reliability the resistor value should be set as high as possible. The value is calculated as follows: +IL= .65/ RCL + .010, -IL = .65/RCL.
SAFE OPERATING AREA (SOA)
3 2
OUTPUT CURRENT FROM +Vs or -Vs (A)
t=
1 .5 .4 .3 .2 .1
ste
ad
ys
ste ta te
ad
ste ys = ta te
10
ad
0m
ys =
s
ta
Tc
12
Tc C
te
Tc
5
85
=
C
25
C
10 20 30 40 50 100 200 300 SUPPLY TO OUTPUT DIFFERENTIAL VOLTAGE, Vs -Vo (V) NOTE: The output stage is protected against transient flyback. However, for protection against sustained, high energy flyback, external fast-recovery diodes should be used.
For: RF = 33K, RI = 3.3K, RG = 22K
Table 1: Typical values for case where op amp effective gain = 1.
CF +15V RI OP AMP VIN -15V -Vs RF CCH +Vs IN COM PB58 OUT
COMP
COMPOSITE AMPLIFIER CONSIDERATIONS
Cascading two amplifiers within a feedback loop has many advantages, but also requires careful consideration of several amplifier and system parameters. The most important of these are gain, stability, slew rate, and output swing of the driver. Operating the booster amplifier in higher gains results in a higher slew rate and lower output swing requirement for the driver, but makes stability more difficult to achieve.
R CL
CC
GAIN R G
RL
GAIN SET
RG = [ (Av-1) * 3.1K] - 6.2K Av = RG + 6.2K 3.1K The booster's closed-loop gain is given by the equation above. The composite amplifier's closed loop gain is determined by the feedback network, that is: -Rf/Ri (inverting) or 1+Rf/Ri (non-inverting). The driver amplifier's "effective gain" is equal to the composite gain divided by the booster gain. Example: Inverting configuration (figure 1) with R i = 2K, R f = 60K, R g = 0 : Av (booster) = (6.2K/3.1K) + 1 = 3 Av (composite) = 60K/2K = - 30 Av (driver) = - 30/3 = -10 +1
Figure 2. Non-inverting composite amplifier.
SLEW RATE
The slew rate of the composite amplifier is equal to the slew rate of the driver times the booster gain, with a maximum value equal to the booster slew rate.
OUTPUT SWING
The maximum output voltage swing required from the driver op amp is equal to the maximum output swing from the booster divided by the booster gain. The Vos of the booster must also be supplied by the driver, and should be subtracted from the available swing range of the driver. Note also that effects of Vos drift and booster gain accuracy should be considered when calculating maximum available driver swing.
This data sheet has been carefully CORPORATION * 5980 NORTH SHANNON ROAD assumed for possible inaccuracies * USA * APPLICATIONS HOTLINE: 1 (800) 546-2739 APEX MICROTECHNOLOGY checked and is believed to be reliable, however, no responsibility*is TUCSON, ARIZONA 85741 or omissions. All specifications are subject to change without notice. PB58U REV. H JANUARY 1998 (c) 1998 Apex Microtechnology Corp.


▲Up To Search▲   

 
Price & Availability of PB58A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X